Application of the Complex Monge-Ampère Equation to the Study of Proper Holomorphic Mappings of Strictly Pseudoconvex Domains

نویسندگان

  • Steven G. Krantz
  • Song-Ying Li
چکیده

We construct a special plurisubharmonic defining function for a smoothly bounded strictly pseudoconvex domain so that the determinant of the complex Hessian vanishes to high order on the boundary. This construction, coupled with regularity of solutions of complex Monge-Ampére equation and the reflection principle, enables us to give a new proof of the Fefferman mapping theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complex Monge-Ampère Operators in Analysis and Pseudo-Hermitian Manifolds∗

The paper is a short survey around the author’s recent works on topics related to complex Monge-Ampère equations and strictly pseudoconvex pseudo-Hermitian manifolds. 1. Invariant differential operators In complex analysis of one variable, the fact that the invariant property for Laplace operator under holomorphic change of coordinates plays an important role. Namely, Let φ : D1 → D2 be a holom...

متن کامل

The Monge–ampère Equation with Infinite Boundary Value

with the infinite boundary value condition u = +∞ on ∂Ω. (1.2) We will look for strictly convex solutions in C∞(Ω); it is necessary to assume the underlying domain Ω to be convex for such solutions to exist. This problem was first considered by Cheng and Yau ([5], [6]) for ψ(x, u) = eKuf(x) in bounded convex domains and for ψ(u) = e2u in unbounded domains. More recently, Matero [11] treated the...

متن کامل

Monge-ampère Equations and Moduli Spaces of Manifolds of Circular Type

A (bounded) manifold of circular type is a complex manifold M of dimension n admitting a (bounded) exhaustive real function u, defined on M minus a point xo, so that: a) it is a smooth solution on M \{xo} to the MongeAmpère equation (ddcu)n = 0; b) xo is a singular point for u of logarithmic type and eu extends smoothly on the blow up of M at xo; c) ddc(eu) > 0 at any point of M \ {xo}. This cl...

متن کامل

Composition operators between growth spaces‎ ‎on circular and strictly convex domains in complex Banach spaces‎

‎Let $\Omega_X$ be a bounded‎, ‎circular and strictly convex domain in a complex Banach space $X$‎, ‎and $\mathcal{H}(\Omega_X)$ be the space of all holomorphic functions from $\Omega_X$ to $\mathbb{C}$‎. ‎The growth space $\mathcal{A}^\nu(\Omega_X)$ consists of all $f\in\mathcal{H}(\Omega_X)$‎ ‎such that $$|f(x)|\leqslant C \nu(r_{\Omega_X}(x)),\quad x\in \Omega_X,$$‎ ‎for some constant $C>0$‎...

متن کامل

Proper Holomorphic Mappings in the Special Class of Reinhardt Domains

A complete characterization of proper holomorphic mappings between domains from the class of all pseudoconvex Reinhardt domains in C with the logarithmic image equal to a strip or a half-plane is given. 1. Statement of results We adopt here the standard notations from complex analysis. Given γ = (γ1, γ2) ∈ R 2 and z = (z1, z2) ∈ C 2 for which it makes sense we put |z | = |z1| γ1 |z2| γ2 . The u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996